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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).

gYM (1)

q̄ (2)

q̄ (3)

q̄ (4)

Jφ = 0 (5)

γ = 0.409552 (6)

γ = 0.408 ± 2% (7)

γ = 0.412 ± 1% (8)

ρ < ρc (9)

ρ > ρc (10)

MBH ∼ (ρ − ρc)
γ (11)

Nf = 1 (12)

Nc = ∞ (13)

U(1)V × U(1)A (14)
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QCD phase diagram
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recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must
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A = co + c1gYM + c2g
2
YM

+ · · · (4)

ΛQCD ∼ 200 MeV (5)

gYM ∼ 1 (6)

Mu ≃ Md :

⎛

⎝

u

d

⎞

⎠ → U

⎛

⎝

u

d

⎞

⎠ , U = Unitary matrix (7)

Mu ≃ Md ≃ 0 :

⎛

⎝

uR

dR

⎞

⎠ → UR

⎛

⎝

uR

dR

⎞

⎠ ,

⎛

⎝

uL

dL

⎞

⎠ → UL

⎛

⎝

uL

dL

⎞

⎠

(8)

{q, q, q} = qi i = 1, . . . , Nc (9)

qa = {u, d, s, c, b, t} , a = 1, . . . , Nf (10)

qi q̄j Gj
i (11)

q̄ (12)

M = 2mq

√

π

g2
YM

Nc

√

(n + ℓ + 1)(n + ℓ + 2) (13)

η

s
≃ (2 − 4) ×

1

4π
(14)

25/2n

Nf

√

g2
YM

NcT 3
(15)

T/M̄ (16)

η

s
≥

1

4π
(17)

1

Can be created in the lab via heavy ion collisions at RHIC and LHC

Tc ~ ΛQCD

QCD phase diagram



Quark-Gluon Plasma

T

Hadrons

n
q

(1)

tcond

hq̄qi (2)

E � 3P̄ = ⇤V , V = hOi (3)

cV < 0 ! c2s =
s

cV
< 0 ! cs is imaginary (4)

! Sound mode is unstable: ! = ±csk � i
�

2
k2 (5)

T
@�

@T
= �(�1

6
+ ��1)�1 (6)

R ⇠ 1/Thyd (7)

`char . 0.26/Thyd (8)

P̄ 6= Peq(E) (9)

P hyd

L

= Peq + P
⌘

+ P
⇣

(10)

P hyd

T

= Peq � 1

2
P
⌘

+ P
⇣

(11)

Tµ

µ

= 0 ! P̄ = Peq(E) = 1

3
E (12)

P̄ =
1

3
(P

L

+ 2P
T

) (13)

Peq (14)

P
T

P
L

����
thydro

' 3 (15)

PT (16)

PL (17)

1

Universality and Scaling in AdS/CFT with Flavour

M2
π = −

⟨q̄LqR⟩Mq

f 2
π

(1)

π0 , π+ , π− . (2)

⟨q̄LqR⟩ ≠ 0 (3)
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recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of
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This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must
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recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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Collision time
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‣ Far-from-equilibrium dynamics ‣ Hydrodynamics ‣ Hadronization

Tc ~ ΛQCD

QCD phase diagram

1st-order transition

‣HIC create new form of matter.
‣Allows for connection between theory and experiment. 

‣Today: What can holography say near the CP?



Plan

• Holographic collisions with phase transitions.  

• Real-time dynamics of phase separation.

• What about critical fluctuations?



Dynamics of phase separation



1st-order phase transition: Spinodal instability
Attems, Bea, Casalderrey, D.M., Triana & Zilhao ’17

Janik, Jankowski,  Soltanpanahi ’17
Attems, Bea, Casalderrey, D.M. & Zilhao ’19

Bellantuono, Janik, Jankowski,  Soltanpanahi ’19
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• Thermodynamic instability implies dynamical instability: 



1st-order phase transition: Phase separation

Perturbed homogeneous state evolves to phase-separated configuration: 

Attems, Bea, Casalderrey, D.M. & Zilhao ’19



1st-order phase transition: Phase separation
Attems, Bea, Casalderrey, D.M. & Zilhao ’19

• Describing evolution in detail could fill an entire talk. 

• Instead of that I will show you that entire evolution is well 
described by 2nd-order hydrodynamics. 



Evolution described by 2nd-order hydrodynamics
Attems, Bea, Casalderrey, D.M., Triana & Zilhao ’17

Attems, Bea, Casalderrey, D.M. & Zilhao ’19

“Purely spatial formulation”

bulk & shear viscosities
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1



Phase-separated configuration

Time evolution at fixed z



Phase-separated configuration

Time evolution at fixed z
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Evolution described by 2nd-order hydrodynamics
Attems, Bea, Casalderrey, D.M., Triana & Zilhao ’17

Attems, Bea, Casalderrey, D.M. & Zilhao ’19

• Problem for time evolution: Hydrodynamics is acausal. 
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• Produces equivalent descriptions if gradients are small, but not in our case.
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1

• We are not doing time evolution, just checking constitutive relations. 



Phase-separated configuration

Time evolution at fixed z
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Purely spatial coefficients are smooth and finite
Attems, Bea, Casalderrey, D.M., Triana & Zilhao ’17

Attems, Bea, Casalderrey, D.M. & Zilhao ’19



MIS coefficients diverge at points where cs=0
Attems, Bea, Casalderrey, D.M., Triana & Zilhao ’17

Attems, Bea, Casalderrey, D.M. & Zilhao ’19

Change of basis involves powers of 1/cs



Collisions across a phase transition



Collisions across a 1st-order phase transition
Attems, Bea, Casalderrey, D.M., Triana & Zilhao  ‘18
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Collisions across a 1st-order phase transition
Attems, Bea, Casalderrey, D.M., Triana & Zilhao  ‘18
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Extremely high energy: 
Recover CFT result



Collisions across a 1st-order phase transition
Attems, Bea, Casalderrey, D.M., Triana & Zilhao  ‘18
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Collisions across a 1st-order phase transition
Attems, Bea, Casalderrey, D.M., Triana & Zilhao  ‘18
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• Well described by 2nd order 
purely spatial hydro but not MIS



Time evolution at mid-rapidity

Snapshots of spatial profile after hydrodynamization



From 1st-order to 2nd-order to crossover
Attems, Bea, Casalderrey, D.M., Triana & Zilhao  ‘18
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From 1st-order to 2nd-order to crossover
Attems, Bea, Casalderrey, D.M., Triana & Zilhao  ‘18

Equilibrium physics is qualitatively very different
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Non-zero latent heat

2nd order
Infinite correlation length

Crossover
Neither of the above



From 1st-order to 2nd-order to crossover
Attems, Bea, Casalderrey, D.M., Triana & Zilhao  ‘18
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But off-equilibrium physics is qualitatively very similar
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Critical fluctuations 



Critical fluctuations

• Potential for order parameter flattens out at critical point: 

T  > Tc T = Tc T < Tc

• At the critical point:

m → 0 , ξ = m−1 → ∞ τξ → ∞



Critical fluctuations

• Near the critical point fluctuations of the order parameter are light and 
must be added to usual hydro:   HYDRO+

                        Usual hydro modes    +    Extra slow mode

• This leads to divergences also in transport coefficients (e.g. viscosities) 
because of mode-mode coupling. 

Stephanov & Yin ‘17



Critical fluctuations

• Near the critical point fluctuations of the order parameter are light and 
must be added to usual hydro:   HYDRO+

• However, at large-N:
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• This leads to divergences also in transport coefficients (e.g. viscosities) 
because of mode-mode coupling. 

Stephanov & Yin ‘17

Supp
re

ss
ed

                        Usual hydro modes    +    Extra slow mode



Critical fluctuations

• Near the critical point fluctuations of the order parameter are light and 
must be added to usual hydro:   HYDRO+

Sm
al

l

• Moreover, even at finite-N: 

Stephanov & Yin ‘17

Rajagopal, Ridgwaya, Weller & Yin ‘17

                        Usual hydro modes    +    Extra slow mode



Thank you


