Hydrodynamics Near a Critical Point

David Mateos
ICREA \& University of Barcelona

QCD phase diagram

Plan

- Real-time dynamics of phase separation.
- Holographic collisions with phase transitions.
- What about critical fluctuations?

Dynamics of phase separation

1 st-order phase transition: Spinodal instability

- Thermodynamic instability implies dynamical instability:

$$
\begin{aligned}
c_{\mathrm{V}}<0 & \rightarrow \quad c_{\mathrm{s}}^{2}=\frac{s}{c_{\mathrm{V}}}<0 \quad \rightarrow \quad c_{\mathrm{s}} \text { is imaginary } \\
\omega=c_{\mathrm{s}} k & \rightarrow \quad e^{-i \omega t}=e^{+\left|c_{\mathrm{s}}\right| k t}
\end{aligned}
$$

1st-order phase transition: Phase separation

Attems, Bea, Casalderrey, D.M. \& Zilhao '19

Perturbed homogeneous state evolves to phase-separated configuration:

1st-order phase transition: Phase separation

- Describing evolution in detail could fill an entire talk.
- Instead of that I will show you that entire evolution is well described by 2 nd-order hydrodynamics.

Evolution described by 2 nd-order hydrodynamics

bulk \& shear viscosities

$$
T_{\mu \nu}=T_{\mu \nu}^{\text {ideal }}+\partial_{\mathrm{spatial}}+\partial_{\mathrm{spatial}}^{2}
$$

"Purely spatial formulation"

$$
-P_{T} \quad--P_{\text {eq }} \quad \cdots-P^{\text {hyd }} \quad \cdots P^{\text {hyd }(1)} \quad--P^{\text {hydMIS }}
$$

Phase-separated configuration

Time evolution at fixed z

$$
-P_{T} \quad--P_{\text {eq }} \quad \ldots-P^{\text {hyd }} \quad \ldots P^{\text {hyd }(1)} \quad--P^{\text {hydMIS }}
$$

Phase-separated configuration

Time evolution at fixed z

$$
-P_{T} \quad--P_{\mathrm{eq}} \quad \cdots-P^{\text {hyd }} \quad \cdots P^{\text {hyd }(1)} \quad-P^{\text {hydMIS }}
$$

Evolution described by 2nd-order hydrodynamics

- We are not doing time evolution, just checking constitutive relations.
- Problem for time evolution: Hydrodynamics is acausal.

$$
T_{\mu \nu}=T_{\mu \nu}^{\text {ideal }}+\partial_{\text {spatial }}+\partial_{\text {spatial }}^{2}
$$

- One fix (Muller-Israel-Stewart): Use lower oder equations to get:

$$
T_{\mu \nu}^{\mathrm{MIS}}=T_{\mu \nu}^{\text {ideal }}+\partial_{\mathrm{spatial}}+\partial_{\mathrm{spatial}} \partial_{\mathrm{time}}
$$

- Produces equivalent descriptions if gradients are small, but not in our case.

$$
-P_{T} \quad--P_{\text {eq }} \quad \ldots-P^{\text {hyd }} \quad \ldots P^{\text {hyd(1) }} \quad--P^{\text {hydMIS }}
$$

Phase-separated configuration

Time evolution at fixed z

$$
-P_{T} \quad--P_{\text {eq }} \quad \cdots-P^{\text {hyd }} \quad \cdots P^{\text {hyd }(1)} \quad--P^{\text {hydMIS }}
$$

Purely spatial coefficients are smooth and finite

MIS coefficients diverge at points where $\mathrm{c}_{\mathrm{s}}=\mathrm{O}$

Change of basis involves powers of $1 / \mathrm{c}_{\mathrm{s}}$

Collisions across a phase transition

Collisions across a 1st-order phase transition

Collisions across a 1st-order phase transition

Extremely high energy:
Recover CFT result

Collisions across a 1st-order phase transition

Attems, Bea, Casalderrey, D.M., Triana \& Zilhao '18

Collisions across a 1st-order phase transition

- Long-lived, quasi-static blob
- Well described by 2 nd order purely spatial hydro but not MIS

Time evolution at mid-rapidity

Snapshots of spatial profile after hydrodynamization

From 1st-order to 2 nd-order to crossover

Attems, Bea, Casalderrey, D.M., Triana \& Zilhao '18

Continous parameter

1 st order

2nd order

Crossover

From 1st-order to 2 nd-order to crossover

Attems, Bea, Casalderrey, D.M., Triana \& Zilhao '18

1 st order
Non-zero latent heat

2nd order
Infinite correlation length

Crossover
Neither of the above

Equilibrium physics is qualitatively very different

From 1st-order to 2 nd-order to crossover

Attems, Bea, Casalderrey, D.M., Triana \& Zilhao '18

But off-equilibrium physics is qualitatively very similar

Critical fluctuations

Critical fluctuations

- Potential for order parameter flattens out at critical point:

- At the critical point:

$$
m \rightarrow 0, \quad \xi=m^{-1} \rightarrow \infty \quad \tau_{\xi} \rightarrow \infty
$$

Critical fluctuations

- This leads to divergences also in transport coefficients (e.g. viscosities) because of mode-mode coupling.
- Near the critical point fluctuations of the order parameter are light and must be added to usual hydro: HYDRO+

Stephanov \& Yin '17

Usual hydro modes + Extra slow mode

Critical fluctuations

- However, at large-N:
- This leads to divergences also in transport coefficients (e.g. viscosities) because of modegomode coupling.

- Near the critical point fluctuations of the order parameter are light and must be added to usual hydro: HYDRO+

Usual hydro modes + Extra slow mode

Critical fluctuations

- Moreover, even at finite- N :
- Near the critical point fluctuations of the order parameter are light and must be added to usual hydro: HYDRO+

Stephanov \& Yin '17

Usual hydro modes + Extra slow mode

Thank you

